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Introduction		
Overview	of	Learning	by	Making	Project			
The	Learning	by	Making	(LbyM)	project	is	funded	by	the	U.S.	Department	of	Education’s	Investing	in	
Innovation	Fund	(i3).	As	a	five-year	development	project	(2014-2018),	Sonoma	State	University	(SSU),	in	
partnership	with	Mendocino	County	Office	of	Education	(MCOE),	is	developing	an	innovative,	integrated	
high	school	Science,	Technology,	Engineering,	and	Mathematics	(STEM)	curriculum.	It	addresses	three	
absolute	priorities	for	the	FY	2013	i3	development	competition:	improving	low-performing	schools	
(absolute	priority	2),	improving	Science,	Technology,	Engineering,	and	Mathematics	(STEM)	education	
(absolute	priority	3),	and	serving	rural	communities	(absolute	priority	8).	The	two-year	LbyM	curriculum	
focuses	on	computational	thinking	and	scientific	and	engineering	design	practices.	The	first-year	course	
(STEM	1)	consists	of	Disciplinary	Core	Ideas	(DCIs)	in	Earth	Science	and	Biology	as	described	in	the	Next	
Generation	Science	Standards	(NGSS,	2013).	The	second-year	course	(STEM	2)	consists	of	DCIs	in	
Chemistry	and	Physics.	Throughout	the	two-course	sequence,	the	LbyM	curriculum	emphasizes	the	
NGSS	crosscutting	concepts	of	Cause	and	Effect,	Systems	and	Systems	Models,	and	Stability	and	Change.	

The	NGSS	recommend	that	students	develop	and	use	models;	construct	explanations	and	arguments	
from	experimental	evidence;	and	report	and	communicate	their	results	to	their	peers	and	instructors.	
The	Common	Core	State	Standards	in	mathematics	(CCSS-M)	suggest	that	students	“apply	the	
mathematics	they	know	to	solve	problems	arising	in	everyday	life,	society,	and	the	workplace.”	CCSS-M	
also	recommend	“the	strategic	use	of	technology	to	assist	students	in	forming	and	testing	conjectures,	
creating	graph	and	data	displays	and	determining	and	assessing	lines	of	fit	for	data”	as	well	as	
performing	geometric	constructions	(CCSS-M	Appendix	A).	The	LbyM	curriculum	integrates	the	NGSS	
Scientific	and	Engineering	Design	Practices	and	CCSS-M	Standards	for	Mathematical	Practice	into	a	
modified	project-based	learning	approach	whereby	the	use	of	mathematics	is	integrated	with	the	
science	content	and	technology	as	students	do	experiments	related	to	real-world	problems.	Both	NGSS	
and	CCSS-M	practices	encourage	students	to	think	analytically	about	both	the	context	around	and	the	
logic	supporting	STEM	concepts.	Ultimately,	this	requires	teachers	to	teach	these	subjects	differently,	
and	leads	students	to	engage	in	STEM	in	a	conceptually	deeper	and	more	meaningful	way	than	in	
previous	years.			

The	curriculum	developed	by	the	LbyM	project	team	includes	an	easy-to-use	Logo	network	that	
supports	data	transfer	from	sensors	used	during	student-designed	investigations.	The	use	of	Logo	is	
particularly	appropriate	for	this	curriculum	since	the	Logo	programming	language	is	specifically	designed	
for	education,	with	the	goal	of	fostering	computational	thinking,	including	modeling,	simulations,	and	
communicating	graphical	information.	During	LbyM	investigations,	students	write	Logo	code	to	read	the	
sensors	and	obtain	data.	Further,	students	build	on	basic	coding	to	perform	individualized	experiments,	
create	simulations,	and	explore	models.	They	analyze	and	interpret	data	while	using	mathematics	and	
engage	in	computational	thinking	without	the	difficulties	usually	encountered	in	learning	complex	
programming	languages.		
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Throughout	the	project,	teachers	are	supported	in	using	this	project-based	curriculum	to	inspire	student	
learning	through	inquiry	in	a	type	of	learning	experience	that	is	often	referred	to	as	“constructionism”	
(Papert	&	Harel,	1991).	To	this	end,	teachers	in	the	study	are	provided	with	ongoing	professional	
development	(PD)	that	emphasizes	technology	and	engineering	skills,	such	as	computer	coding	and	
circuitry.	PD	training	also	covers	instructional	approaches	centered	around	student	learning	through	
inquiry,	data	collection,	and	experimental	design.	

Logic	Model		
As	mentioned	previously,	the	LbyM	curriculum	was	created	by	content	specialists	from	SSU.	The	
specialists	have	created	a	full	experience	for	teachers.	The	SSU	team	supports	teachers	by	providing	a	
Summer	Institute	for	PD,	and	follow-up	training	sessions	throughout	the	school	year	to	explore	and	
learn	the	STEM	concepts	in	the	LbyM	curriculum	and	implementation.	Teachers	then	implement	the	
LbyM	units	in	their	science	classes,	during	which	SSU	staff	is	readily	available	when	instructional	or	
technological	support	is	needed.	For	each	year	of	the	LbyM	project,	the	LbyM	courses	have	fulfilled	the	
A-G	course	requirements	for	college	track	classes.		

The	LbyM	outcomes	are	focused	on	teachers’	instructional	practices,	student	achievement	in	math	and	
science,	and	their	engagement,	interest,	and	confidence	in	STEM.	Many	of	these	factors	are	tied	to	the	
computational	thinking	required	to	teach	and	engage	in	the	LbyM	STEM	classes.	Figure	1	shows	the	logic	
model	of	LbyM.		

	

 	
Figure	1.	Learning	by	Making	Curriculum	Logic	Model	



 

–	3	– 

Driven	by	the	logic	model,	the	study	addresses	the	following	research	questions:		

Confirmatory	Research	Questions:	

RQ1:	Does	LbyM	have	an	effect	on	mathematics	performance	of	9th	to	12th	grade	students	compared	
to	mathematics	performance	of	9th	to	12th	grade	students	in	the	business-as-usual	condition?	

RQ2:	Does	LbyM	have	an	effect	on	science	performance	of	9th	to	12th	grade	students	compared	to	
science	performance	of	9th	to	12th	grade	students	in	the	business-as-usual	condition?	

Exploratory	Research	Questions:	

RQ3:	Does	LbyM	have	an	effect	on	high	school	mathematics	and	science	teachers'	competence	in	
delivering	computational	thinking	lab-based	STEM	curriculum?		

RQ4:	Does	LbyM	increase	high	school	students’	interests	in	STEM	and	a	STEM	career?	
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Study	Design	and	Methodology	
Background	of	the	Implementation	Sites	
The	study	of	the	LbyM	STEM	1	project	took	place	in	the	2016-2017	academic	year.	A	total	of	278	high	
school	students	were	recruited	from	six	high-need	rural	high	schools	in	Mendocino	County,	California.	
Among	the	278	high	school	students,	137	received	the	LbyM	STEM	1	intervention,	and	141	students	
who	were	enrolled	in	other	high	school	science	or	math	courses	served	as	comparison	students.	These	
six	high-need	rural	high	schools	in	Mendocino	County	primarily	serve	families	with	high	rates	of	family	
poverty	and	low	rates	of	college	readiness.	As	shown	in	Table	1,	students	in	the	participating	schools	are	
largely	from	low-income	households,	as	indicated	by	the	proxy	measure	of	eligibility	for	reduced-price	
or	free	lunch.	

Table	1.	Participating	School	Demographics	(2016-17	Academic	Year)	
	 Anderson	

Valley	High	
School	

Layton-ville	
High	School	

Point	Arena	
High	School	

Round	Val-
ley	High	
School	

Ukiah	High	
School	

Willits	High	
School	

Race	 	 	 	 	 	 	
				Hispanic	or	Latino	 74.2	 10.8	 51.7	 27.0	 47.7	 32.1	
				African	American	 0.9	 0.8	 0.0	 0.0	 1.2	 0.7	
				White	 23.0	 70.0	 39.3	 19.0	 42.8	 55.0	
				Asian/Pacific	Islander	 0.0	 0.8	 0.7	 0.0	 2.0	 2.2	
				Native	American	 0.9	 13.3	 7.6	 53.9	 4.4	 5.4	
				Two	or	More	Races	 0.9	 4.2	 0.0	 0.0	 1.7	 1.7	
Free/Reduced	Price	Meals	 71.9	 66.7	 54.5	 34.8	 61.1	 74.0	

EL	Students	 18.9	 0.0	 15.2	 20.2	 14.7	 8.5	

Source:	California	Department	of	Education 

Intervention	and	Comparison	Conditions	
The	study	of	the	LbyM	STEM	1	project	used	a	quasi-experimental	design.	One	hundred	thirty-seven	
students	were	recruited	to	enroll	in	eight	LbyM	STEM	1	classes	in	six	participating	high	schools.	Three	of	
the	participating	high	schools	are	small	schools,	and	it	is	not	possible	to	find	comparison	students	from	
these	small	schools.	Therefore,	all	comparison	students	were	recruited	from	the	larger	schools,	with	a	
total	of	141	comparison	students	from	six	classrooms	in	three	out	of	six	participating	high	schools.	
Figure	2	presents	a	flowchart	showing	the	number	of	school,	classroom,	and	student	participants	during	
the	recruitment	and	the	changes	in	the	numbers	of	student	participants. 
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Number	of	recruited	classes:	
N=14	classes	from	6	participating	schools	
(total	#	of	students:	278)	

	
	
	

	
Number	of	classes	in	the	treatment	group:	
N=8	classes	from	6	participating	schools	
(total	#	of	students:	137)	

	 	
Number	of	classes	in	the	comparison	group:	
N=6	classes	from	3	schools	out	of	6	partici-
pating	schools	
(total	#	of	students:	141)	

	
	
	

	
Number	of	classes	remaining	in	the	final	
	analytic	sample:	

Student	assessment:	

• N=6	classes	from	5	schools	
• One	class	was	dropped	because	they	
did	not	complete	the	post	assessment.	

• Two	classes	were	merged	because	of	
the	small	sample	size	in	one	class.	

• #	of	students:	98	
Student	attitude	survey:		

• N=	5	classes	from	4	schools	
• Two	classes	were	merged	because	of	
the	small	sample	size	in	one	class.	

• #	of	student:	75	

	 	
Number	of	classes	remaining	in	the	final	
analytic	sample:	

Student	assessment:	

• N=6	classes	from	3	schools	
• #	of	student:	52	
• Seven	8th	graders	were	excluded	be-

cause	they	were	not	eligible	for	the	
study	

Student	attitude	survey:	

• N=4	classes	from	2	schools	
• Two	classes	were	dropped	because	

they	did	not	complete	the	post	sur-
vey	

• #	of	student:	26	
• Seven	8th	graders	were	excluded	be-

cause	they	were	not	eligible	for	the	
study	

Figure	2.	Learning	by	Making	Curriculum	Participant	Flow	Chart	
 
The	LbyM	STEM	1	curriculum	comprises	six	units	and	focuses	on	the	three-dimensional	learning	
strategies	of	the	NGSS,	computer	and	computer	programming	language,	and	problem	solving	and	
troubleshooting.	Based	on	the	instructional	design	template	provided	by	SSU,	each	unit	includes	11	
components:	Objectives,	Material	List,	Common	Core	Standards,	NGSS,	Background	for	the	Teacher,	
Logo	Vocabulary,	Troubleshooting,	Lesson	(Procedure,	Foundations,	Going	Further	Extensions),	
Solutions,	Teacher	Materials,	and	Student	Handout.	Although	the	curriculum	provides	a	suggested	
pacing	guide	for	each	lesson,	it	allows	teachers	to	adapt	to	their	own	style.	
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Unit	1	is	designed	to	introduce	students	to	the	class	and	to	set	the	stage	for	the	three	dimensional	
learning	strategies	of	the	Next	Generation	Science	Standards.	It	consists	of	two	lessons,	with	four	
activities	in	Lesson	1	and	two	experiments	in	Lesson	2.		

Unit	2	is	designed	to	introduce	students	to	the	computer	and	computer	programming	language	that	
they	use	throughout	the	course.	It	consists	of	seven	lessons.	Students	begin	Unit	2	by	learning	the	
structure	and	function	of	the	HP	Stream	11	and	the	Ubuntu	operating	system-Ubuntu,	and	they	
experience	and	practice	TurtleLogo	coding	throughout	the	unit.		

Unit	3	is	designed	to	introduce	basic	electricity	concepts	in	preparation	for	hardware	troubleshooting	in	
future	experiments.	Through	three	lessons	in	Unit	3,	students	learn	about	the	underlying	properties	of	
power,	voltage,	current,	and	resistance.	They	also	obtain	practical	skills	through	constructing	functional	
circuits.		

Unit	4	is	designed	to	introduce	how	jLogo	talks	to	uLogo,	and	how	uLogo	controls	the	outputs	and	inputs	
of	analog	devices.	Through	sixteen	lessons	with	four	experiments	in	Unit	4,	students	learn	to	define	
input,	output,	Analog-Digital-Conversion	(ADC),	and	Analog	to	Digital	Units	(ADUs).	They	also	practice	
three	languages	(TurtleLogo,	jLogo,	and	uLogo)	through	the	experiments	to	understand	how	analog	
sensor	readings	are	converted	to	digital	values	using	a	mathematical	relationship.		

Unit	5	is	designed	to	introduce	heat	transfer	through	conduction,	convection,	or	radiation.	Through	nine	
lessons	with	three	experiments	in	Unit	5,	students	explore	different	methods	of	heat	transfer,	convert	
sensor	outputs	in	ADUs	to	meaningful	quantities	by	deriving	the	linear	relationships	between	ADU	and	
degrees	Celsius,	and	create	plots	in	jLogo	and	explore	mean,	median,	mode,	and	linear	regressions.	

Unit	6	provides	students	with	the	opportunity	to	create	their	first	computational	models	of	physical	
phenomenon.	Through	nine	lessons	in	Unit	6,	students	design	and	conduct	an	experiment,	build	a	
MudWatt	microbial	fuel	cell	using	locally	collected	soil,	explore	the	random	microscopic	nature	of	heat	
transfer,	create	tactile	models	of	heat	transfer,	and	quantify	the	rate	of	heat	transfer	along	different	
lengths	of	conductive	wires.		

SSU	provides	the	LbyM	curriculum,	the	equipment,	and	supporting	materials.	Students	are	expected	to	
complete	the	six	units	in	an	academic	year.	Comparison	students	use	business-as-usual	mathematics	
and	science	curricula.	These	business-as-usual	materials	are	not	provided	by	SSU,	but	rather	are	
educational	materials	that	teachers	normally	have	used	with	their	students.	

Instruments  
Confirmatory	Outcome	Measures	
Given	that	the	NGSS-aligned	science	assessment	is	still	under	development	in	California	and	that	there	is	
no	Smarter	Balanced	Summative	Assessment	in	Math	for	9th	and	10th	graders,	to	address	the	
confirmatory	research	questions	WestEd	selected	assessment	items	from	the	Certica	Formative	
Assessment	Item	Bank.	The	Certica	Formative	Assessment	Item	Bank	is	a	repository	of	mathematics	
items	aligned	to	Common	Core	Standards	in	Mathematics	and	to	NGSS.	The	selected	assessment	items	
focus	on	mathematics	and	science	topic	areas	covered	in	the	LbyM	STEM	1	curriculum.	The	science	and	
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math	assessments	are	not	timed	tests,	and	no	precise	time	limits	are	required	for	students	being	tested.	
On	average,	the	two	assessments	each	take	40-50	minutes.	All	participating	students	(treatment	and	
comparison)	were	asked	to	complete	the	math	and	science	assessments	in	fall	2016	as	the	pre-test	and	
in	spring	2017	as	the	post-test.		

Math	Assessment.	A	total	of	eight	math	items	were	selected	to	measure	two	math	topic	areas:	Linear	
and	Non-linear	Equations	(5	items),	and	Research	and	Data	Representation	(3	items).	The	scores	from	
the	math	assessment	represented	the	percent	of	correctly	answered	items,	which	were	calculated	by	
summing	the	number	of	items	correctly	answered	divided	by	the	total	number	of	items	in	the	
assessment	(8	items).	Therefore,	the	scores	range	from	0	to	100.	The	reliabilities	on	the	pre-test	and	the	
post-test	are	0.59	(KR-20)	and	0.62	(KR-20),	respectively.		

Science	Assessment.	The	science	assessment	includes	20	items	that	measure	three	science	topic	areas:	
Energy	(8	items),	Atmosphere	and	Weather	(6	items),	and	Heat	(6	items).	The	scores	from	the	science	
assessment	represented	the	percent	of	correctly	answered	items,	which	were	calculated	by	summing	
the	number	of	items	correctly	answered	divided	by	the	total	number	of	items	in	the	assessment	(20	
items).	Therefore,	the	scores	range	from	0	to	100.	The	reliabilities	on	the	pre-test	and	the	post-test	are	
0.67	(KR-20)	and	0.76	(KR-20),	respectively.			

Exploratory	Outcome	Measures	
High	School	Student	Attitudes	Toward	STEM	Survey.	The	High	School	Student	Attitudes	Toward	STEM	
Survey	was	developed	by	North	Carolina	State	University	(Faber,	M.,	Unfried,	A.,	Wiebe,	E.N.,	Corn,	J.,	&	
Collins,	T.L.,	2013).	This	survey	includes	48	five-point	Likert	scale	items	and	is	designed	to	measure	high	
school	student	attitudes	toward	science,	mathematics,	engineering	and	technology,	and	21st	Century	
skills.	It	also	includes	16	items	that	measure	student	interest	in	STEM	careers.	Results	from	exploratory	
factor	analysis	indicated	that	the	survey	has	good	construct	validity	with	four	clear	constructs	measuring	
student	attitudes	toward	science,	math,	engineering	and	technology,	and	21st	Century	skills.	The	
internal	reliability	coefficient	was	0.83.	All	participating	students	(treatment	and	comparison)	were	
asked	to	complete	the	survey	in	fall	2016	as	the	pre-survey	and	in	spring	2017	as	the	post-survey.		

Teacher	Instructional	Practice	and	Competency	Survey.	The	teacher	survey	includes	three	sections.	The	
first	section	collects	teacher	demographic	data,	including	gender,	ethnicity,	academic	and	technology	
background,	and	teaching	experience.	The	second	section	focuses	on	teacher	instructional	practices	and	
includes	31	items	adapted	and	adopted	from	Surveys	of	Enacted	Curriculum	(SEC)	(Blank,	Porter,	&	
Smithson,	2001).	The	third	section	addresses	teacher	competencies	and	includes	34	items	developed	by	
WestEd	and	Sonoma	State	University	in	2014.		

The	teacher	instructional	practices	section	includes	three	subscales	of	the	SEC.	All	three	subscales	are	
five-point	Likert-type	scales	(“1”	=	none,	“5”	=	considerable).	The	first	subscale	addresses	instructional	
practices	in	general	and	asks	teachers	to	rate	their	instructional	time	spent	on	various	activities	in	
mathematics	or	science	(14	items,	a	=	.86)	(e.g.,	How	much	of	the	instructional	time	do	students	use	to	
engage	in	applying	math/science	concepts	to	“real-world”	problems?).	The	second	subscale	addresses	
instructional	practices	supporting	students	to	collect,	organize,	display	and/or	present	data	(7	items,	a	=	
.	94)	(e.g.,	When	students	collect,	organize,	display	and/or	present	data	as	part	of	the	instruction,	how	
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much	of	that	time	do	they	collect	data	by	counting,	measuring	or	observing?).	The	third	subscale	
addresses	instructional	practices	related	to	students’	use	of	calculators,	computers,	and	other	
educational	technology	(10	items,	a	=	.82)	(e.g.,	When	students	are	engaged	in	activities	that	involve	the	
use	of	calculators,	computers,	or	other	educational	technology	as	part	of	the	instruction,	how	much	of	
that	time	do	they	practice	skills	and	procedures?).		

The	teacher	competencies	section	includes	two	subscales.	The	first	subscale	is	a	four-point	Likert-type	
scale	(“1”	=	need	to	learn	this,	“4”	=	I	can	teach	other	educators)	that	assesses	teacher	competencies	in	
supporting	students’	critical	thinking	skills	(12	items,	a	=	.92)	(e.g.,	I	design	learning	activities	that	
require	students	to	apply	existing	knowledge	to	generate	new	ideas,	products,	or	processes).	The	
second	subscale	is	a	five-point	Likert-type	scale	(“1”	=	strongly	disagree,	“5”	=	strongly	agree)	that	
measures	teacher	technology	competencies	(22	items,	a	=	.93)	(e.g.,	I	know	how	to	solve	my	own	
hardware	problems).	

Six	of	the	LbyM	teacher	participants	completed	the	survey	before	the	Summer	Institute	in	June	2016	
and	again	before	the	Summer	Institute	in	June	2017.	For	this	report,	pre	to	post	changes	in	teacher	
instructional	practices	and	competencies	will	be	reported	based	on	the	six	teachers’	survey	responses.	
Because	of	the	small	sample	size,	pre	and	post	data	were	analyzed	descriptively	to	provide	a	general	
picture	of	potential	changes	in	teacher	instructional	practices	and	competencies	through	the	LbyM	PD	
and	teaching	experience.	The	results	should	be	interpreted	with	caution	and	no	statistical	inferences	
should	be	made	based	on	the	results.		

Implementation	Measures 	
Sign-in.	A	daily	sign-in	sheet	was	used	to	track	teachers’	attendance	during	the	Summer	Institute	and	
follow-up	training	sessions.	

Teacher	implementation	logs.	Teachers	were	asked	to	complete	an	online	implementation	log	every	
other	week	throughout	the	2016-17	academic	year.	The	teacher	logs	included	questions	about	how	
many	LbyM	units	each	class	completed,	which	lessons	were	skipped,	and	which	lessons	were	modified.	
Teachers	were	also	asked	to	comment	on	the	successes	they	had	experienced	with	LbyM	over	the	past	
two	weeks,	as	well	as	the	challenges	they	experienced.	The	overall	response	rate	for	the	
implementation	logs	was	55%.	

Summer	Institute	observation.	Evaluators	observed	the	4-day	Summer	Institute	in	June	2016.	The	
observation	focused	on	(1)	facilitators’	delivery	of	key	content;	and	(2)	participating	teachers’	
engagement	in	the	training.	

Teacher	focus	groups.	Evaluators	conducted	teacher	focus	groups	at	the	end	of	the	Summer	Institute.	All	
teachers	were	invited	and	eleven	participated	in	the	focus	groups.	The	teacher	focus	groups	captured	
teachers’	overall	reactions	to	Learning	by	Making	content	and	practices,	and	ease	or	difficulty	of	
engaging	in	the	PD.	

Teacher	satisfaction	survey.	Participating	teachers	were	asked	to	complete	a	satisfaction	survey	after	
the	Summer	Institute.	The	survey	captured	teachers’	overall	satisfaction	with	the	training	logistics	and	
content.		
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Classroom	observations.	Researchers	observed	classrooms	during	the	2016-2017	academic	year.	The	
observations	focused	on	the	teachers’	instructional	practice.	We	adapted	the	classroom	observation	
protocol	from	Horizon	Classroom	Observation	Protocol	(Weiss,	Pasley,	Smith,	Banilower,	&	Heck,	2003).	
Dimensions	observed	included	the	richness	of	the	content,	student	reasoning	and	meaning	making,	and	
the	clarity	and	correctness	of	the	content,	which	is	consistent	with	the	LbyM	model.		

Teacher	interviews.	Teachers	were	interviewed	after	each	classroom	observation.	Topics	discussed	in	
the	interviews	included	those	directly	related	to	the	classroom	observation,	and	broader	topics	
addressing	the	LbyM	curriculum	and	its	implementation	and	effects	more	broadly.	

Sample	Characteristics		
While	it	is	not	typical	to	have	8th	grade	students	participating	in	courses	at	high	schools,	there	were	
seven	8th	grade	students	in	one	comparison	classroom.	The	seven	8th	grade	students	participated	in	a	9th	
grade	algebra	course	since	one	was	not	offered	in	their	middle	school.	Given	that	the	seven	8th	grade	
students	did	not	participate	in	any	other	high	school	courses	and	were	not	official	high	school	students,	
they	were	not	eligible	for	a	LbyM	course.	Therefore,	these	8th	grade	students	were	excluded	from	the	
final	analytic	sample1.	The	final	analytic	sample	for	student	math	and	science	achievement	includes	a	
total	of	150	students	from	12	classrooms	in	five	rural	high	schools	with	both	non-missing	pre	and	post	
assessment	data.	The	final	analytic	sample	for	student	attitudes	toward	STEM	includes	a	total	of	101	
students	from	nine	classrooms	in	four	rural	high	schools	with	both	non-missing	pre	and	post	attitude	
survey	data.	

Table	2	shows	that	the	majority	of	the	students	in	treatment	group	were	in	9th	grade,	whereas	the	grade	
levels	in	comparison	group	ranged	from	9th	grade	to	12th	grade.	The	treatment	and	comparison	groups	
were	equivalent	at	baseline	as	measured	by	the	LbyM	science	assessment	(effect	size	<0.05).	The	
difference	between	treatment	and	comparison	on	the	baseline	math	assessment	was	adjustable	(0.05<	
effect	size	<0.25;	Table	3).	In	addition,	the	treatment	and	comparison	groups	were	equivalent	at	
baseline	on	their	attitudes	toward	math	(effect	size	<0.05).	The	baseline	difference	between	treatment	
and	comparison	groups	on	their	attitudes	toward	engineering	was	adjustable	(0.05<	effect	size	<0.25).	
However,	treatment	and	comparison	groups	were	not	equivalent	at	baseline	on	their	attitudes	toward	
science	and	21st	Century	skills	(effect	size	>	0.25;	Table	4).	Tables	A1	and	A2	in	Appendix	A	provide	the	
unadjusted	means	and	standard	deviations	of	student	pre	assessments	and	pre	attitude	measures	for	
the	final	analytic	sample,	respectively.	

	 	

                                                             
1	Baseline	equivalence	tests,	student	math	and	science	outcomes,	and	student	attitudes	toward	STEM	for	the	sample	with	8th	
graders	are	presented	in	Tables	B1-B7	of	Appendix	A.	
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Table	2.	Participants’	Demographic	Information,	by	Experimental	Condition	
	 Comparison	 Treatment	 	
	 Number	 Percenta	 Number	 Percent	 p-valueb	

Grade	level	 	 	 	 	 0.051	
9th	grade	 24	 46.15%	 87	 88.78%	 --	
10th	grade	 12	 23.08%	 8	 8.16%	 --	
11th	grade	 11	 21.15%	 0	 0%	 --	
12th	grade	 5	 9.62%	 3	 3.6%	 --	

a.	Computed	based	on	valid	(non-missing)	data.	Components	may	not	sum	to	100	because	of	rounding.	
b.	A	test	for	equality	of	proportion	between	treatment	and	comparison	students	was	conducted,	and	the	cor-
rected	p-value,	accounting	for	clustering	effects	(students	were	nested	with	schools),	was	reported	here.		

	
Table	3.	Baseline	Equivalence	for	Student	Pre	Assessments,	by	Experimental	Condition	

Achievement	Measure	 Comparison	 Treatment	 Differencec	 p-value	 Effect	Sized	

LbyM	Math	Assessment	 	 	 	 	 	

Mean	 40.78	 40.88	 -0.10	 0.98	 0.005	

Standard	deviation	 20.59	 16.26	 --	 --	 --	
N	 52	 98	 --	 --	 --	

LbyM	Math	Assessment	 	 	 	 	 	

Mean	 45.95	 43.49	 2.45	 0.76	 0.104	
Standard	deviation	 23.55	 24.03	 --	 --	 --	

N	 52	 98	 --	 --	 --	

c.	Computed	based	on	valid	(non-missing)	data.	A	multi-level	regression	model	that	accounted	for	clustering	
effects	(students	were	nested	with	classrooms)	was	used	to	test	whether	students’	math	and	science	pre-
tests	at	baseline	were	equivalent	between	treatment	and	comparison	groups.	

d.	Effect	size	was	calculated	by	dividing	treatment	and	comparison	difference	by	the	comparison	group	stand-
ard	deviation	of	the	pre	measure	variable.	

	
Table	4.	Baseline	Equivalence	for	Student	Pre	Attitude	Measures,	by	Experimental	Condition	
Attitude	Measure	 Comparison	 Treatment	 Differencee	 p-value	 Effect	Sizef	

Student	Attitude	towards	Math		 	 	 	 	 	
Mean	 3.37	 3.34	 0.03	 0.90	 0.03	

Standard	deviation	 1.00	 0.78	 --	 --	 --	
N	 26	 75	 --	 --	 --	

Student	Attitude	towards	Science		 	 	 	 	 	
Mean	 3.45	 3.17	 0.28	 0.14	 0.38	

Standard	deviation	 0.74	 0.57	 --	 --	 --	

N	 24	 75	 --	 --	 --	
Student	Attitude	towards	Technology	
and	Engineering	

	 	 	 	 	

Mean	 3.32	 3.49	 -0.17	 0.28	 0.25	
Standard	deviation	 0.69	 0.69	 --	 --	 --	

N	 26	 75	 --	 --	 --	
Student	Attitude	towards	21st	Century	
Skills	

	 	 	 	 	

Mean	 4.20	 3.91	 0.29	 .035*	 0.55	
Standard	deviation	 0.53	 0.52	 --	 --	 --	

N	 26	 74	 --	 --	 --	
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e.	Computed	based	on	valid	(non-missing)	data.	A	multi-level	regression	model	that	accounted	for	clustering	
effects	(students	were	nested	with	classrooms)	was	used	to	test	whether	students’	attitudes	towards	math,	
science,	technology	and	engineering,	and	21st	Century	skills	pretests	at	baseline	were	equivalent	between	
treatment	and	comparison	groups.	

f.	Effect	size	was	calculated	by	dividing	treatment	and	comparison	difference	by	the	comparison	group	stand-
ard	deviation	of	the	pre	measure	variable.	

Data	Analysis	Methods	
Several	approaches	were	utilized	to	address	missing	data.	First,	students	who	did	not	take	both	the	pre-	
and	post-content	assessments	were	excluded	from	the	analytic	sample	for	that	outcome	measure.	
Students	who	did	not	take	both	the	pre-	and	post-STEM	attitudes	surveys	were	excluded	from	the	
analytic	sample	for	that	outcome	measure.	On	the	content	assessments,	missing	item	responses	were	
treated	as	incorrect	responses.	On	the	student	attitudes	toward	STEM	surveys,	items	missing	responses	
were	excluded	from	analysis;	mean	scores	for	each	scale	were	calculated	using	the	total	number	of	
questions	answered	for	that	scale,	so	as	not	to	deflate	the	mean	artificially.	Researchers	decided	to	
exclude	data	from	any	students	who	skipped	more	than	10%	of	questions	on	the	assessments	or	
surveys,	but	no	students	met	this	criteria	for	exclusion.	

The	distribution	of	scores	on	the	pre-	and	post-content	assessments	and	surveys	was	analyzed	by	class	
period	for	excessive	skewness,	but	none	was	found,	indicating	that	there	is	no	need	to	remove	any	
students	from	the	analytic	sample	due	to	outlying	scores.	

Student	Content	Assessment	
Assignment	to	the	intervention	or	comparison	groups	occurred	at	the	classroom	level,	creating	a	
“cluster”	intervention	design.	Given	this	design,	a	hierarchical	linear	model	was	used	to	investigate	the	
influence	of	the	LbyM	curriculum	on	student	math	and	science	performance	(postMATH	and	
postSCIENCE),	structuring	students	nested	within	class	periods.	This	model	is	preferred	to	more	
precisely	estimate	the	influence	of	the	intervention	when	it	is	necessary	to	account	for	within-group	and	
between-group	effects	(Raudenbush,	1997).	To	control	for	student	performance	at	baseline,	we	
included	students’	pretest	scores	on	the	content	assessment	(preMATH	or	preSCIENCE)	as	a	covariate	in	
the	Level	1	model.	Three	school-level	demographic	information	items	were	used	as	covariates	in	the	
outcome	models	estimating	the	treatment	effects.	These	demographic	data	are	publicly	available	from	
the	California	Department	of	Education.	

• EL:	Percent	of	English	learners	who	have	not	yet	been	reclassified	as	English	proficient	

• MIN:	Percent	of	non-White	students,	including	Latino	students	

• FRL:	Percent	of	socio-economically	disadvantaged	students,	represented	by	the	proxy	measure	
of	the	percent	of	students	who	receive	free	or	reduced	price	lunch.	

The	Level	2	model	included	the	intervention	variable	(TREAT).	A	series	of	sensitivity	analyses	were	
conducted	to	confirm	this	modeling	choice	(Tables	A3	and	A4	in	Appendix	A).	The	main	effect	model	was	
specified	using	the	covariates	listed	above,	and	run	using	Stata	14	statistical	analysis	software.	The	
models	were	specified	as	follows:	
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Level	1:	postMATHij	=	π0j	+	π1j(preMATH)ij	+	eij	

Level	2:		π0	=	β00	+	β01(TREAT)j	+	β02(EL)j	+	β03(MIN)j	+	β04(FRL)j	+	r0j	

		

Level	1:	postSCIENCEij	=	π0j	+	π1j(preSCIENCE)ij	+	eij	

Level	2:	π0j	=	β00	+	β01(TREAT)j	+	β02(EL)j	+	β03(MIN)j	+	β04(FRL)j	+	r0j	

	

This	model	allowed	researchers	to	compare	the	intervention	group’s	post-intervention	outcomes	with	
those	of	the	comparison	group,	after	adjusting	for	difference	in	baseline	scores	and	demographic	
factors.	Adjusted	intervention	and	comparison	group	means	were	reported	for	each	outcome	variable.		

Teacher	Instructional	Practice	and	Competency	Survey		
To	explore	changes	in	teacher	instructional	practices	and	technological	competencies,	each	of	the	
survey	subscales	was	examined	independently.	Six	of	the	LbyM	teacher	participants	completed	the	
survey	before	the	Summer	Institute	in	June	2016	and	again	before	the	Summer	Institute	in	June	2017.	
For	this	report,	pre	to	post	changes	on	teacher	instructional	practices	and	competencies	are	reported	
based	on	the	six	teachers’	survey	responses.	Because	of	the	small	sample	size,	pre	and	post	data	were	
analyzed	descriptively	to	provide	a	general	picture	of	potential	changes	on	teacher	instructional	
practices	and	competencies	through	the	LbyM	PD	and	teaching	experience.	The	results	should	be	
interpreted	with	caution	and	no	statistical	inferences	should	be	made	based	on	the	results.	

Student	Attitudes	Towards	STEM	Survey	
To	explore	the	effect	of	the	intervention	on	student	attitudes	toward	STEM	subjects	and	careers,	
separate	analyses	were	conducted	on	outcomes	from	two	sections	of	the	STEM	attitudes	survey.	First,	
per	the	preferred	reporting	method	of	the	survey	developers	(Faber,	M.	et	al.,	2013),	mean	scores	were	
calculated	for	each	of	the	four	content	area	scales	(Math,	Science,	Engineering	and	Technology,	and	21st	
Century	Skills)	by	treatment	group.	Each	scale	contains	between	eight	and	11	items,	using	a	five-point	
scale,	with	1	representing	“Strongly	Disagree”	and	5	representing	“Strongly	Agree.”	Four	negatively-
worded	items	were	reverse	coded,	so	that	a	high	value	indicates	the	same	tone	of	response	as	for	a	
positively-worded	item.	A	hierarchical	linear	model	was	used	to	examine	the	effect	of	the	treatment	on	
student	attitudes,	as	measured	by	these	four	area	scales.	The	model	employed	mirrored	the	model	used	
to	analyze	the	content	assessment	data,	as	shown	below,	where	SCALE	represents	one	area	scale.	

Level	1:	postSCALEij	=	π0j	+	π1j(preSCALE)ij	+	eij	

Level	2:		π0	=	β00	+	β01(TREAT)j	+	β02(EL)j	+	β03(MIN)j	+	β04(FRL)j	+	r0j	

	

This	model	allowed	researchers	to	compare	the	intervention	group’s	post-intervention	attitudinal	
outcomes	with	those	of	the	comparison	group,	after	adjusting	for	difference	in	baseline	responses	and	
demographic	factors.	Adjusted	intervention	and	comparison	group	means	were	reported	for	each	scale	
in	the	survey.	

Second,	chi-square	analyses	were	used	to	determine	if	students’	interest	in	a	variety	of	STEM	careers	
changed	significantly	when	comparing	baseline	scores	to	those	at	the	end	of	the	intervention.	Chi-
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square	analyses	are	the	preferred	method	for	comparing	nominal	categories,	such	as	“interested”	and	
“not	interested,”	that	often	occur	in	survey	data	(Lynch,	2013).	The	STEM	attitudes	survey	included	12	
items	asking	if	students	were	“Not	interested	at	all,”	“Not	so	interested,”	“Interested,”	or	“Very	
interested”	in	a	series	of	STEM	careers	including:	Physics,	Environmental	work,	Biology	and	Zoology,	
Veterinary	work,	Mathematics,	Medicine,	Earth	Science,	Computer	Science,	Chemistry,	Energy,	and	
Engineering.	Responses	of	“Not	interested	at	all”	or	“Not	so	interested”	were	collapsed	to	“Not	
interested,”	while	responses	of	“Interested”	or	“Very	interested”	were	collapsed	to	“Interested.”	Chi-
square	statistics	were	calculated	for	treatment	group	differences	at	baseline,	and	then	again	after	the	
intervention.	Researchers	then	compared	chi-square	statistics	between	pre-	and	post-surveys	to	look	for	
changes	in	group	differences	after	the	intervention.	

	 	



 

–	14	– 

Learning	by	Making	Implementation	
Teacher	Professional	Development	
Attendance.	Teacher	attendance	for	the	professional	development	trainings	was	consistently	high.		For	
the	2016-2017	Summer	Institute,	there	was	a	92%	teacher	attendance	rate	on	four	out	five	days	of	the	
week.	On	day	three,	there	was	an	83%	teacher	attendance	rate.	For	the	follow-up	professional	
development	training	sessions	in	October,	December,	and	March,	there	was	100%	teacher	attendance.	
In	January,	92%	of	teachers	attended	the	follow-up	training,	and	in	April	83%	attended.	Appendix	B	
shows	LbyM	fidelity	matrix	and	the	fidelity	of	implementation	results	in	the	2016-2017	academic	year.	

Fidelity	of	Implementation	at	Intervention	Sites	
Curriculum	dosage	and	fidelity.	Overall	curriculum	dosage	and	fidelity	to	the	curriculum	were	measured	
using	bi-monthly	online	teacher	logs.	All	teachers	in	the	study	finished	the	2016-17	school	year	with	a	
moderate	fidelity	rating.	In	total,	there	were	six	units	included	in	the	2016-17	LbyM	curriculum.	Four	
classes	completed	the	LbyM	lessons	nearly	through	Unit	4—up	to	Lesson	13,	14,	or	16.	Two	classes	
completed	the	lessons	through	the	beginning	of	Unit	6.	While	classes	completed	most	of	the	LbyM	
lessons	in	the	order	outlined	in	the	curriculum,	there	were	instances	where	teachers	skipped	lessons	or	
completed	lessons	out	of	order.	In	certain	cases,	teachers	skipped	lessons	due	to	time	constraints,	
feeling	that	it	was	more	important	to	move	forward	in	the	curriculum	than	to	teach	every	lesson	in	a	
unit.	In	other	cases,	teachers	felt	that	an	activity	was	not	particularly	relevant	or	engaging	for	their	
students.	Teachers	also	explained	that	they	skipped	certain	lessons	to	begin	Turtle	Logo	coding—as	
students	expressed	enthusiasm	about	using	Logo—but	came	back	to	those	lessons	later.	One	teacher	
skipped	Unit	5	altogether	because	the	year	was	ending	and	she	wanted	her	students	to	experience	Unit	
6:	Mud	Watts.	

Most	teachers	reported	modifying	LbyM	lessons	when	necessitated	by	their	classroom	context.	Two	
primary	reasons	emerged	from	the	analysis	that	explain	teachers’	reasons	for	modifying	the	lessons:	1)	
to	provide	content	background	for	students	in	preparation	for	upcoming	LbyM	lessons,	and	2)	to	
provide	opportunities	for	students	to	practice	the	skills	that	they	learn	through	LbyM.	Teachers	reported	
that	many	of	their	students	enter	high	school	with	low	abilities,	especially	in	math.	Since	the	LbyM	
lessons	require	some	background	knowledge	in	science	and	algebra,	some	teachers	felt	the	need	to	
scaffold	the	LbyM	curriculum	with	content-specific	supplementary	lessons	that	they	developed	
themselves.	One	teacher,	for	example,	explained,	“I’m	noticing	that	when	they	[SSU]	give	an	activity,	
there’s	a	lot	of	prep	work	I	have	to	do	in	order	to	do	the	activity.	Like	for	this	[referring	to	the	bacterial	
growth	lab],	I	had	to	teach	them	graphing.	They	don’t	know	how	to	graph.	I	put	up	really	simple	data—
number	of	tadpoles,	temperature,	or	something—and	I	got	all	kinds	of	shapes	[from	the	students].	They	
had	no	idea	how	to	graph.	So,	it	took	me	a	few	days	to	teach	graphing	before	I	could	even	jump	into	
this.”	Another	teacher	shared	a	similar	situation	he	encountered,	saying,	“I	did	more	frontloading	of	
atoms	and	electrons	and	how	elements	work.	Because	if	you’re	going	to	sit	there	and	talk	about	
conductivity,	you	really	want	to	talk	about	why	metals	are	special.	I	wanted	them	to	have	a	little	bit	of	
that	background.”	
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Another	way	in	which	teachers	reported	supplementing	the	LbyM	curriculum	was	to	create	
opportunities	for	practice.	Because	the	computer	skills	were	completely	new	to	many	students,	one	
teacher	explained,	they	needed	a	lot	of	time	to	practice,	especially	once	they	reached	the	lessons	
involving	Logo.	One	teacher,	for	example,	created	a	lesson	where	students	collaboratively	wrote	a	story	
by	printing	one	line	of	text	at	a	time	in	the	Logo	console.	The	goal	of	this	lesson	was	to	build	comfort	
using	basic	Logo	commands	to	print	text.	The	students	began	the	lesson	at	a	slower	pace,	often	referring	
to	the	Logo	documentation	or	asking	each	other	for	help	with	coding	syntax.	With	each	round	of	
printing	a	new	line	of	text,	however,	students	worked	faster;	the	repetition	appeared	to	reinforce	their	
confidence	and	their	abilities	to	complete	the	coding	task	at	hand.	While	this	lesson	was	related	to	LbyM	
learning	objectives,	the	teacher	created	it	in	response	to	her	perception	that	students	needed	applied	
practice	with	this	topic	before	moving	on	in	the	unit.	

Challenges	for	implementation.	While	implementation	challenges	varied	by	school	site,	findings	revealed	
that	the	most	common	barriers	to	implementation	were	student	absenteeism	and	the	time-consuming	
nature	of	teaching	coding.	Student	absenteeism	or	inconsistent	attendance	was	a	problem	faced	by	
several	teachers	in	the	study,	especially	in	the	smaller	schools.	The	most	commonly	reported	reason	for	
student	absenteeism	was	a	repeating	conflict	with	athletics,	but	other	reasons	included	skipping	school	
during	fishing	season	and	leaving	town	for	families’	seasonal	work.	One	teacher	plainly	stated,	“Student	
absenteeism	is,	I	would	say,	my	greatest	challenge.”	She	went	on	to	elaborate:	“This	is	a	class	where	the	
skills	build	on	the	last	skill....I	don’t	think	it	would	be	possible	to	really	achieve	in	the	area	of	computer	
programming	if	you	missed	too	much,	because	you	have	to	keep	building	your	skills.”	Teachers	
explained	that	the	academic	consequences	of	absenteeism	were	more	acute	in	LbyM	than	other	classes,	
because	there	were	no	structures	or	materials	in	place	for	students	to	make	up	the	work.	

According	to	the	teachers	in	the	study,	the	primary	reason	that	they	did	not	complete	the	curriculum	
with	their	class—making	it	only	to	Unit	4	or	6—was	that	Units	3	and	4	were	too	long,	consuming	many	
more	class	periods	than	they	had	anticipated.	Learning	the	many	layers	of	Logo	syntax	was	challenging	
for	students,	many	of	whom	had	never	worked	with	computer	code	before.	Eventually,	students	grew	
tired	of	coding	on	the	computers,	and	teachers	sensed	that	they	needed	other	activities	to	provide	more	
variety.	Most	classrooms	never	reached	the	phase	of	the	curriculum	where	students	would	have	begun	
to	use	Logo	to	run	their	own	experiments.	
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Results	
Student	Mathematics	and	Science	Performance	
Results	show	that	the	intervention	was	associated	with	significant	gains	in	science	content	knowledge	(p	
<	0.01;	effect	size	=	0.34),	as	indicated	in	Table	5.	The	students	in	the	treatment	group,	on	average,	
scored	over	seven	points	more	than	those	in	the	comparison	group,	which	represents	a	medium	effect	
size	of	0.34.	Although	there	was	no	significant	difference	between	the	student	scores	for	treatment	and	
comparison	groups	on	math	content	knowledge,	the	students	in	the	treatment	group	scored	over	four	
points	more	than	those	in	the	comparison	group	with	an	effect	size	of	0.17.	These	assessment	data	were	
analyzed	using	the	eligible	analytic	sample	of	9th	through	12th	grade	students	who	completed	both	the	
pre-	and	post-assessments	(N	=	150).	Analysis	including	the	seven	8th	grade	students	who	participated	in	
the	control	group	can	be	found	in	Appendix	A.	

Table	5.	Student	Math	and	Science	Outcomes	(N=150)	

Outcome		
Measure	

Covariate-Adjusted	Mean	 Covariate-	
Adjusted	Mean	
Differenceg	

p-Value	 95%	Confidence	
Interval	

Effect	
Sizeh	Treatment	

(N	=	98)	
Comparison	
(N	=	52)	

postMATH	 50.73	
(2.12)	

46.21	
(3.02)	

4.52	
(3.89)	

0.25	 -3.10	-	12.14	 0.17	

postSCI	 49.36	
(1.68)	

41.49	
(2.39)	

7.87	
(3.07)	

0.01	 1.85	-	13.88	 0.34	

g.	Data	were	regression-adjusted	using	multi-level	regression	models	to	account	for	differences	in	baseline	
characteristics.	

h.	Effect	size	was	calculated	by	dividing	impact	estimates	by	the	comparison	group	standard	deviation	of	the	
outcome	variable.	

	
Analysis	of	the	data	generated	in	teacher	interviews,	focus	groups,	and	implementation	logs	supports	
the	observed	intervention	group	growth	in	math	performance.	Several	teachers,	for	example,	noted	
student	improvement	in	math,	particularly	for	their	lower-achieving	students.	One	teacher	stated,		

“One	of	the	things	that	I	noticed	last	year	but	I	feel	like	it’s	really	happening	[now]	is	
that	the	kids	are	learning	a	lot	of	math.	I	feel	like	there’s	such	a	connection	between	
what	we	do	in	this	class…So	I	just	think	that	the	math	that’s	embedded	in	the	
curriculum	is	really	incredible.	It’s	accessible	to	a	real	spectrum	of	kids	with	different	
math	skills.”		

Another	teacher	echoed	this	sentiment,	explaining	that	the	curriculum	is	a	great	vessel	for	learning	
about	graphing,	with	which	many	of	her	students—even	the	seniors—struggle.	Given	the	significant	
treatment	effect	for	science	performance,	presented	in	Table	5,	it	is	surprising	to	note	that	teachers	felt	
there	was	not	enough	science	content	covered	in	the	LbyM	curriculum.	While	teachers	agreed	that	
LbyM	integrates	science	with	math,	technology,	and	engineering,	they	felt	that	including	additional	
science	content	would	serve	to	benefit	student	science	performance	even	more.	One	teacher	described	
how	she	felt	the	technology	components	were	over-emphasized	at	the	expense	of	science	content:	“It's	
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still	too	much	technology.	Too	much	curriculum	to	get	through	the	year.	It's	all	valuable	and	we	see	
where	it	fits	in…but	it	has	to	be	cut	back	in	order	to	get	through	everything	that	we	need	to	cover,	in	
order	to	get	to	the	experiments,	in	order	to	cover	into	the	MudWatts	[microbes	unit]	and	the	biology.”	

Teacher	Instructional	Practices	and	Technological	Competency	
Findings	from	the	teacher	instructional	practices	and	technological	competency	survey,	along	with	
classroom	observations	and	teacher	interviews	and	focus	groups,	show	that	teachers’	approaches	to	
instruction	have	changed	in	some	areas	more	than	others	since	the	start	of	the	study.	The	most	
observable	changes	between	pre-	and	post-survey	responses	from	six	teachers	in	five	schools	occurred	
in	the	following	two	areas:	1)	teachers’	instructional	practices	in	supporting	students	to	collect,	
organize,	display	and/or	present	data,	and	2)	teachers’	own	technological	competencies.	

With	regard	to	the	amount	of	instructional	time	during	which	students	worked	with	data,	pre-	to	post-
survey	changes	were	observed	across	several	activities.	The	percentage	of	teachers	who	reported	
spending	at	least	25%	of	instructional	time	dedicated	to	collecting	data	by	counting,	measuring,	or	
observing	rose	from	40%	at	pre-test	to	83%	at	post-test.	The	percentage	of	teachers	who	reported	
spending	at	least	25%	of	instructional	time	dedicated	to	displaying	and	analyzing	data	rose	from	20%	to	
83%.	The	percentage	of	teachers	who	reported	spending	at	least	50%	of	instructional	time	on	using	
technology	to	solve	problems	rose	from	20%	to	67%.	The	percentage	of	teachers	who	reported	spending	
at	least	50%	of	instructional	time	on	organizing,	outlining,	or	summarizing	information	rose	from	60%	to	
100%.		

Findings	from	teacher	interviews	and	focus	groups	indicate	that	they	view	data	collection	and	analysis	as	
aligned	with	the	practice-	and	process-based	NGSS	goals.	One	teacher,	for	example,	reported	that	the	
experience	of	teaching	LbyM,	combined	with	training	from	SSU,	has	helped	him	transition	to	a	more	
NGSS-aligned	approach	of	project-based	learning.	He	explained,		

“The	idea	of	giving	[students]	a	little	bit	of	information	about	a	thing,	letting	them	
practice	it,	seeing	how	to	build	the	skill,	and	then	let	them	come	up	with	their	means	of	
going	through	a	project.	I	felt	like	if	I	didn't	have	[LbyM]…I	would	have	a	hard	time	
making	the	transition	to	the	whole	project-based	learning	thing.”		

He	added,	“I've	become	more	student	centered.	It	may	have	been	part	of	this	program,	too,	because	
this	program	is	very	student	centered.”	Other	teachers	echo	this	sentiment,	describing	how	they	feel	
increasingly	comfortable	letting	the	students	direct	their	own	inquiry,	and	work	through	their	own	
problems.	One	teacher	shared,	“I	love	when	I	step	back,	because	really	I'm	steering	the	ship,	but	they're	
really	the	ones	that	are	making	it	go.	And	I	like	that.”	These	teacher	perspectives	help	to	explain	the	
increases	in	instructional	time	dedicated	to	data	collection,	analysis,	and	presentation.	

Noticeable	changes	from	pre-	to	post-survey	were	also	observed	in	teachers’	reported	technological	
competencies.	The	percentage	of	teachers	who	responded	that	they	either	“strongly	agree”	or	“agree”	
with	the	following	statements	at	pre-	and	post-survey	are	displayed	in	Table	6.	These	changes	suggest	a	
substantial	increase	in	teachers’	level	of	comfort	with	technology	and	perceived	technological	
capabilities.	
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Table	6.	Percentage	of	Teachers	Who	Either	“Strongly	Agree”	or	“Agree”	with	Statements	of	Technological	
Competency	at	Pre-	and	Post-survey	(N	=	6)	

Survey	item	 Pre-survey	 Post-survey	

I	know	how	to	solve	my	own	hardware	problems.	 40%	 100%	

I	know	how	to	solve	my	own	software	problems.	 40%	 80%	

I	can	solve	basic	electronic	problems.	 40%	 100%	

I	can	use	electronics	tools	to	measure	voltage,	current,	and	resistance.	 40%	 100%	

I	can	build	and	debug	electronic	circuits	that	will	read	data	from	sensors.	 40%	 100%	

I	know	about	technologies	that	I	can	use	for	understanding	and	doing	mathematics.	 40%	 83%	

I	know	about	technologies	that	I	can	use	for	understanding	and	doing	science.	 60%	 100%	

	

After	working	with	LbyM	for	two	years	and	receiving	consistent	professional	development	from	SSU,	
teachers	explained	that	they	felt	more	confident	teaching	the	course	to	their	students,	given	the	
technological	requirements	of	the	curriculum.	As	one	teacher	shared,	“I’m	like	a	different	teacher	than	I	
was	last	year—I	can	feel	it!”	She	reported	feeling	more	knowledgeable	now	about	the	process	of	coding,	
which	allowed	her	not	only	to	debug	more	technical	issues	that	came	up,	but	also	to	manage	her	
classroom	better.	For	example,	she	knew	at	which	points	during	coding	exercises	she	needed	to	instruct	
students	to	test	their	code	to	check	for	errors.	Being	able	to	foresee	coding	challenges,	she	explained,	
allowed	her	to	plan	her	lessons	better.		

Student	STEM	Attitudes	
Results	indicate	no	significant	changes	in	student	attitudes	toward	math,	science,	engineering,	or	21st	
Century	skills	as	measured	by	the	area	scales	in	the	STEM	attitudes	survey	that	can	be	attributed	to	the	
LbyM	curriculum	(Table	7).	While	moderate	effect	sizes	are	observed	for	the	science	(d	=	0.29)	and	21st	
Century	skills	(d	=	0.30)	area	scales,	these	effects	are	not	statistically	reliable.	These	models	were	run	
using	the	eligible	analytic	sample	of	9th	through	12th	grade	students	who	completed	both	the	pre-	and	
post-assessments	(N	=	101).	Results	including	the	seven	8th	grade	students	who	participated	in	the	
control	group	can	be	found	in	Appendix	A.	

Table	7.	Adjusted	Means	of	Student	Responses	by	Scale	(N	=	101) 

Scale	
Covariate-Adjusted	Mean	 Covariate-Ad-

justed	Mean	Dif-
ferencei	

p-Value	 95%	Confi-
dence	Interval	

Effect	
Sizej	Treatment	

(N	=	75)	
Comparison	
(N	=	26)	

Math	 3.26	(0.07)	 3.30	(0.17)	 -0.05	(0.21)	 0.83	 -0.47	–	0.37	 -0.05	
Science	 3.17	(0.08)	 2.95	(0.21)	 0.22	(0.26)	 0.40	 -0.29	–	0.75	 0.29	
Engineering	 3.26	(0.10)	 3.28	(0.22)	 -0.02	(0.28)	 0.94	 -0.59	–	0.53	 -0.03	
21st	Century	 3.97	(0.08)	 3.81	(0.18)	 0.16	(0.23)	 0.49	 -0.29	–	0.61	 0.30	

i.	Data	were	regression-adjusted	using	multi-level	regression	models	to	account	for	differences	in	baseline	
characteristics.	

j.	Effect	size	was	calculated	by	dividing	impact	estimates	by	the	comparison	group	standard	deviation	of	the	
outcome	variable	(Math	SD	=	1.07;	Science	SD	=	0.77;	Engineering	SD	=	0.78;	21st	Century	SD	=	0.54)	
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To	understand	whether	the	LbyM	curriculum	influenced	students’	interest	in	pursuing	a	career	across	
several	STEM	fields,	researchers	conducted	chi-square	analyses	by	treatment	group	for	both	the	pre-	
and	post-surveys.	The	percentages	of	each	group	who	reported	being	“Interested”	and	“Not	Interested”	
in	each	of	twelve	STEM	careers,	and	the	associated	chi-square	statistic	p-values,	are	presented	in	Table	
8.	For	the	pre-survey,	differences	between	treatment	group	and	comparison	group	responses	were	
found	to	be	statistically	significant	at	a	=	0.05	for	the	careers	of	Chemistry	(X2	(1,	N	=	101)	=	3.93,	p	=	
0.05)	and	Engineering	(X2	(1,	N	=	101)	=	7.79,	p	=	0.01).	For	the	post-survey,	no	differences	between	
treatment	group	and	comparison	group	responses	were	found	to	be	statistically	significant,	suggesting	
that	LbyM	did	not	influence	student	attitudes	toward	STEM	careers	as	measured	by	the	student	STEM	
attitude	survey.	
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Table	8.	Chi-squared	Test	of	Student	Interest	in	STEM	Careers	(N	=	101)	
	 Pre-Intervention	 Post-Intervention	
Field	 Intervention	 Comparison	 P-value	 Intervention	 Comparison	 P-value	

	 N	 %	 N	 %	 	 N	 %	 N	 %	 	
Physics	 	 	 	 	 0.26	 	 	 	 	 0.44	
Not	interested	 47	 62.67	 13	 50.00	 	 55	 73.33	 17	 65.38	 	
Interested	 28	 37.33	 13	 50.00	 	 20	 26.67	 9	 34.62	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Env.	Science	 	 	 	 	 0.11	 	 	 	 	 0.18	
Not	interested	 48	 64.00	 21	 80.77	 	 59	 78.67	 17	 65.38	 	
Interested	 27	 36.00	 5	 19.23	 	 16	 21.33	 9	 34.62	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Biology	 	 	 	 	 0.37	 	 	 	 	 0.93	
Not	interested	 45	 60.00	 13	 50.00	 	 44	 58.67	 15	 57.69	 	
Interested	 30	 40.00	 13	 50.00	 	 31	 41.33	 11	 42.31	 	

Total	 75	 100.00	 58	 100.00	 	 75	 100.00	 26	 100.00	 	
Vet.	Medicine	 	 	 	 	 0.63	 	 	 	 	 0.19	
Not	interested	 45	 60.00	 17	 65.38	 	 47	 62.67	 20	 76.92	 	
Interested	 30	 40.00	 9	 34.62	 	 28	 37.33	 6	 23.08	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Mathematics	 	 	 	 	 0.47	 	 	 	 	 0.22	
Not	interested	 46	 61.33	 18	 69.23	 	 53	 70.67	 15	 57.69	 	
Interested	 29	 38.67	 8	 30.77	 	 22	 29.33	 11	 42.31	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Medicine	 	 	 	 	 0.46	 	 	 	 	 0.34	
Not	interested	 38	 50.67	 11	 42.31	 	 37	 49.33	 10	 38.46	 	
Interested	 37	 49.33	 15	 57.69	 	 38	 50.67	 16	 61.54	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Earth	Science	 	 	 	 	 0.72	 	 	 	 	 0.97	
Not	interested	 52	 69.33	 19	 73.08	 	 58	 77.33	 20	 76.92	 	
Interested	 23	 30.67	 7	 26.92	 	 17	 22.67	 6	 23.08	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Comp.	Science	 	 	 	 	 0.62	 	 	 	 	 0.24	
Not	interested	 42	 56.00	 16	 61.54	 	 50	 66.67	 14	 53.85	 	
Interested	 33	 44.00	 10	 38.46	 	 25	 33.33	 12	 46.15	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Med.	Science	 	 	 	 	 0.37	 	 	 	 	 0.67	
Not	interested	 45	 60.00	 13	 50.00	 	 44	 58.67	 14	 53.85	 	
Interested	 30	 40.00	 13	 50.00	 	 31	 41.33	 12	 46.15	 	

Total	 75	 100.00	 26	 100.00	 	 45	 100.00	 26	 100.00	 	
Chemistry	 	 	 	 	 0.05*	 	 	 	 	 0.15	
Not	interested	 51	 68.00	 12	 46.15	 	 52	 69.33	 14	 53.85	 	
Interested	 24	 32.00	 14	 53.85	 	 23	 30.67	 12	 46.15	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Energy	 	 	 	 	 0.40	 	 	 	 	 0.53	
Not	interested	 45	 60.00	 18	 69.23	 	 54	 72.00	 17	 65.38	 	
Interested	 30	 40.00	 8	 30.77	 	 21	 28.00	 9	 34.62	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
Engineering	 	 	 	 	 0.01**	 	 	 	 	 0.16	
Not	interested	 31	 41.33	 19	 73.08	 	 40	 53.33	 18	 69.23	 	
Interested	 44	 58.67	 7	 26.92	 	 35	 46.67	 8	 30.77	 	

Total	 75	 100.00	 26	 100.00	 	 75	 100.00	 26	 100.00	 	
	 	 *	Significant	at	a	=	0.05	

**	Significant	at	a	=	0.01 
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Despite	the	lack	of	evidence	from	the	STEM	attitudes	survey	that	student	attitudes	toward	STEM	
subjects	improved	as	a	result	of	the	LbyM	experience,	an	analysis	of	data	from	teacher	interviews,	focus	
groups,	and	implementation	logs	indicates	that	students	were	highly	engaged	by	the	LbyM	curriculum,	
and	benefited	from	the	non-traditional,	inquiry-driven	structure	of	the	course.	Findings	related	to	
student	engagement	emerged	around	student	enthusiasm	for	the	LbyM	course,	increased	problem-
solving	stamina,	and	inclusion	of	students	with	different	academic	abilities.	

Overall,	teachers	report	high	levels	of	student	engagement,	and	general	student	satisfaction	with	the	
LbyM	curriculum.	Students	are	especially	excited	by	the	opportunity	to	conduct	high-tech	experiments.	
For	example,	students	were	eager	to	use	the	experimental	set-up	for	the	Heat	and	Sand	experiment	
because	it	is	exciting	and	unknown	to	them.	In	describing	her	students’	enthusiasm	for	computer	
coding,	one	of	the	teachers	who	was	observed	this	fall	recalled,	“Kids	would	come	in	a	few	minutes	
before	school	started.	They	would	get	their	laptop	out,	and	they	would	start	working,	and	they	would	
just	be	here.	And	I’ve	never	had	that	in	a	first	period	class,	where	the	kids	came,	and	they	just	started	
working	without	any	instruction	from	me.”	Another	teacher	recounted	how	a	group	of	girls	she	had	
recruited	to	join	the	class,	though	hesitant	at	first,	became	fully	immersed	in	learning	how	to	code.	She	
noted	with	great	pride,	“By	the	end	of	the	year,	they	were	like,	‘I	want	to	be	a	computer	engineer!’”	One	
of	the	teachers	noted	that	to	keep	the	students	engaged	in	any	kind	of	learning	activity,	“You	have	to	
make	it	fun.”	She	said	the	LbyM	curriculum	lends	itself	that	that	kind	of	engaging,	fun	learning.	

Over	the	course	of	the	year,	students	developed	the	persistence	and	positive	attitude	needed	to	solve	
problems	they	encountered.	“I	think	they	learn	problem	solving	techniques,”	one	teacher	shared.	“I	
think	they	learn	to	feel	good	about	themselves	when	they	accomplished	something.”	Acquiring	this	skill	
was	not	without	a	struggle.	Teachers	explained	that	their	students	were	not	accustomed	to	a	curriculum	
like	LbyM,	where	the	answers	are	not	spelled	out	in	a	textbook.	Initially,	they	became	frustrated	when	
they	could	not	figure	out	key	concepts	right	away.	After	a	while,	however,	students	adapted	to	the	
notion	that	struggling	is	part	of	LbyM,	as	one	teacher	described:		

“After	they	were	frustrated	and	finally	worked	through	it	and	had	success	a	couple	
times,	then	it	was	no	problem,	then	it	became	a	game	of,	‘How	do	I	figure	out	how	this	
fits	together?’	.	.	.	and	they'd	start	looking	over	here	and	that	person	would	be	like,	
‘Don't	tell	me	yet,’	.	.	.	and	it's	like,	‘I	want	to	figure	it	out	myself.’”		

One	teacher	commented	on	how	the	challenges	of	the	curriculum	actually	engaged	students	more	in	
the	long-run,	reflecting,	“The	difficulty	is	just	getting	them	to	put	the	energy	in.	It	does	take	more	work	
on	their	part,	but	they	also	have	more	fun.”	

One	feature	that	teachers	found	to	be	unique	to	the	LbyM	curriculum	was	its	ability	to	engage	students	
who	typically	struggle	in	school.	Findings	from	teacher	interviews	and	focus	groups	revealed	that	some	
individual	students	who	typically	struggle	to	participate	exhibited	higher	levels	of	participation	in	LbyM,	
and	even	demonstrated	leadership	in	certain	instances.	As	one	teacher	commented,	“What	I	like	about	
it	is	that	different	people	are	shining,”	referring	to	her	own	observations	of	typically	disengaged	
students	volunteering	to	lead	certain	tasks.	Another	teacher	shared,	“I	think	that	kids	that	maybe	
haven't	always	felt	strong	come	into	this	class,	and	they're	like,	‘Oh	wow,	I	am	strong.	I'm	doing	really	
well.’	Or,	‘I	get	it!’”	Two	separate	teachers	reported	that	their	students	with	special	needs,	while	still	
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requiring	extra	attention,	remained	engaged	in	the	curriculum,	and	were	even	quicker	to	complete	
certain	activities	than	the	other	students.	“There’s	some	lessons	where	she’s	the	only	one	who	gets	it,”	
one	teacher	explained,	referring	to	a	student	with	special	needs.	“When	we	were	learning	the	Tower	of	
Hanoi,	all	of	the	other	kids	were	experimenting,	and	she	just	got	it.	She	went	through	the	entire	process	
perfectly	with	no	errors.”	Similarly,	another	teacher	described	an	English-learning	student	who,	though	
typically	shy	and	quiet,	had	begun	to	consistently	take	the	lead	in	computer	coding	activities.	Teachers	
proposed	that	the	alternative	structure	of	the	curriculum	could	be	responsible	for	the	increased	
participation	of	students	who	often	disengage.	
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Discussion	
The	current	study	describes	the	implementation	and	impact	of	a	highly	innovative	high	school	
integrated	science	curriculum	that	prompts	students	and	teachers	to	use	computational	thinking	and	
technological	tools	and	resources	to	solve	meaningful,	real-world	problems.	Building	on	traditional	
project-based	learning	curricula,	the	LbyM	STEM	curriculum	allows	students	and	teachers	to	focus	on	
CCSS-M	and	NGSS,	including	the	Scientific	and	Engineering	Practices,	in	a	collaborative	environment	
where	teachers	and	students	work	together	to	conduct	investigations	and	solve	meaningful	and	
complex	problems	related	to	science	topics.	The	structure	of	the	curriculum	allows	teachers	to	learn	
alongside	their	students	as	they	engage	in	purposeful	research.	Findings	from	the	study	contribute	to	
our	knowledge	of	how	an	innovative,	technology	and	problem-based	curriculum	can	change	the	way	
science	and	mathematics	instruction	is	delivered	in	rural	high	schools.	They	also	provide	insights	around	
the	value	of	a	curriculum	based	on	computational	thinking;	how	technology-rich,	inquiry-	and	PBL-based	
learning	environments	support	learning	and	engagement	in	NGSS	and	CCSS-M;	and	best	practices	in	
teacher	professional	development	related	to	this	innovative	curriculum.	

Contributing	to	the	Research	Base	in	Rural	Science	Education		
Research	in	rural	education	suggests	that	student	engagement,	motivation,	and	learning	is	enhanced	
when	instructional	strategies	focus	on	valuing	and	using	local	knowledge	in	science	education	(Avery,	
2013),	and	when	instruction	supports	students’	interests	and	is	connected	to	their	lives	(Hardre	&	
Reeve,	2003).	In	addition,	inquiry-based	science	instruction	has	been	shown	to	be	effective	in	rural	
secondary	science	education	(Marshall	&	Allston,	2014).	Findings	from	the	current	study	support	results	
from	this	previous	research.	Findings	from	analysis	of	teacher	focus	groups	and	interviews	suggest	that	
students	responded	positively	to	the	inquiry-based	activities	in	the	curriculum,	and	recognized	the	
relevance	of	the	tasks	and	investigations	to	their	everyday	lives.		

Using	Computational	Thinking	as	a	Foundation	for	Learning	
The	study	also	provides	evidence	around	the	topic	of	computational	thinking	as	a	foundation	for	
instruction	in	STEM	fields	(National	Research	Council,	2010,	2011;	Yadav,	Hong,	&	Stephenson,	2016),	
and	the	growing	research	base	suggesting	that	STEM	curricula	based	on	computational	thinking	can	
promote	learning	in	in	rural	schools	(Cham,	2017;	Repenning,	et	al.,	2015).	The	LbyM	intervention	is,	in	
part,	based	on	students’	and	teachers’	use	of	Logo	programming	activities	to	solve	problems	in	STEM	
subject	areas.	Logo	was	specifically	designed	to	foster	computational	thinking	in	education	(Papert,	
1999).	Despite	struggles	during	the	school	year	around	the	appropriate	levels	of	complexity	of	the	Logo	
syntax	used	in	the	intervention,	the	computational	thinking	aspects	of	the	LbyM	curriculum	were	
enthusiastically	taken	up	and	expanded	upon	by	students	and	teachers	alike.	Teachers	reported	that	
students	were	motivated	by	the	coding	aspects	of	the	curriculum,	and	often	mastered	coding	tasks	
more	quickly	than	teachers.	These	findings	are	aligned	with	findings	from	other	research	studies	
focusing	on	STEM	curricula	based	on	computational	thinking.	Future	study	of	LbyM	should	specifically	
focus	on	the	role	of	computational	thinking	with	regard	to	learning	outcomes.	
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Building	Teachers’	Capacity	to	Deliver	a	Technology-Rich	Inquiry-
Based	Curriculum		
The	intervention	in	the	current	study	included	a	curriculum	that	incorporates	activities	and	
investigations	adapted	from	project-based	learning	(PBL)	models	to	include	the	use	of	technological	
tools	and	resources,	including	electronic	sensors,	breadboards,	and	programming	resources.	The	
intervention	included	intensive	professional	development	and	support	to	teachers	to	build	their	capacity	
to	effectively	deliver	this	new	model	of	instruction.	The	findings	of	the	current	study	contribute	to	a	
growing	research	base	around	best	practices	in	supporting	teachers	to	deliver	instruction	in	technology-
rich,	PBL-based	learning	environments	that	support	learning	in	NGSS	and	CCSS-M.	Two	strands	of	
research	address	professional	development	strategies	to	support	this	type	of	learning	in	STEM	
classrooms.	One	strand	focuses	on	a	professional	development	framework	for	the	development	of	
teachers’	Technological	Pedagogical	and	Science	Content	Knowledge,	or	TPASK	(Angeli	&	Valanides,	
2009).	Adapted	from	Mishra	and	Koehler’s	(2007)	TPACK	model	(Technological	Pedagogical	Content	
Knowledge),	TPASK	professional	development	models	include	capacity-building	in	the	areas	of	the	use	of	
technology,	science	content	knowledge,	and	pedagogies	for	effective	science	instruction	using	
technology.	The	TPASK	framework	has	been	found	to	be	a	useful	model	for	teachers	to	use	in	lesson	
design	(Angeli	&	Valanides,	2009)	and	has	been	found	to	support	instruction	that	promotes	learning	in	
NGSS	core	ideas	(Koh,	Chai,	&	Lim,	2017)	and	practices	(Harris,	2016;	Koh,	Chai,	&	Lim,	2017).		

A	second	strand	of	research	that	addresses	professional	development	strategies	to	support	technology-
rich,	PBL-based	learning	environments	in	STEM	classrooms	involves	instructional	strategies	that	
promote	“deeper	learning,”	what	researchers	call	a	collection	of	student	competencies,	including:	
mastering	rigorous	academic	content;	learning	how	to	think	critically	and	solve	problems;	working	
collaboratively;	communicating	effectively;	directing	one’s	own	learning;	and	developing	an	academic	
mindset	and	a	belief	in	one’s	ability	to	grow	(Grover	&	Pea,	2016;	Heller,	Wolfe,	&	Steinberg,	2017;	
Hewlett	Foundation,	2017;	Pellegrino	&	Hilton,	2013).	Instructional	strategies	that	promote	deeper	
learning	include	student-led	and	collaborative	PBL,	use	of	technological	computational	thinking	practices	
and	resources,	and	strategies	that	promote	higher-order	thinking	(Grover	&	Pea,	2016;	Heller,	Wolfe,	&	
Steinberg,	2017;	Hewlett	Foundation,	2017;	Nogera,	2017).		

The	LbyM	teacher	professional	development	provided	by	SSU	during	the	current	study’s	intervention	
included	many	aspects	included	in	TPASK	framework,	including	supporting	science	content	knowledge	
and	science	pedagogical	content	knowledge,	as	well	as	knowledge	about	technologies.	The	professional	
development	was	successful	in	building	teachers’	capacity	to	effectively	use	technologies	to	support	
science	learning.	The	intervention	also	included	many	of	the	strategies	suggested	in	deeper	learning	
professional	development	models,	including	student-led	and	collaborative	PBL;	computational	thinking	
as	an	integral	part	of	the	curriculum;	and	strategies	that	promote	higher-order	thinking,	such	as	complex	
problem-solving,	critical	thinking,	and	effective	communication.	Findings	from	the	current	study	
contribute	to	recent	research	related	to	building	teacher	capacity	to	deliver	a	technology-rich	inquiry-
based	curriculum	to	support	students’	mastery	of	NGSS	and	CCSS-M.		
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Conclusion	
The	2016-17	evaluation	of	LbyM	was	designed	to	test	whether	the	curriculum	impacts	student	
performance	in	math	and	science,	to	determine	the	extent	to	which	teacher	instructional	practices	and	
technological	competencies	are	influenced	by	the	curriculum,	and	to	gauge	whether	the	course	impacts	
student	attitudes	toward	STEM.	Student	outcome	data	revealed	that	of	the	9th	through	12th	grade	
students	in	the	sample,	LbyM	students	scored	statistically	higher	on	the	science	content	assessment	
following	the	intervention	than	students	in	the	comparison	group,	but	indicated	no	difference	between	
groups	on	the	math	content	assessment.	Findings	from	teacher	input	indicate	that	students	benefit	
academically	from	LbyM,	so	it	would	be	beneficial	to	continue	to	monitor	indicators	of	student	academic	
growth	during	LbyM	course	implementation.	Findings	from	the	teacher	survey	on	instructional	practices	
and	technological	competency	reveal	that	teachers	are	dedicating	more	class	time	to	specific	data	
collection,	analysis,	and	display,	and	that	their	own	comfort	with	technology	has	increased	since	
teaching	LbyM.	While	quantitative	evidence	of	changes	in	student	attitudes	toward	STEM	is	
inconclusive,	analysis	of	data	from	observations,	teacher	interviews,	teacher	focus	groups,	and	
implementation	logs	shows	high	levels	of	student	engagement	and	an	increase	in	students’	stamina	for	
problem	solving	and	overcoming	unfamiliar	challenges	in	the	classroom.	Teachers	agreed	that	LbyM	is	
especially	beneficial	for	many	students	who	do	not	excel	in	traditional	high	school	classes.	

States	and	districts	across	the	country	continue	to	integrate	NGSS	and	CCSS-M	into	their	high	school	
curricula.	However,	studies	on	integrated	curricula—and	specifically	on	the	effectiveness	of	technology-	
and	computer	science-based	programs	on	student	math	and	science	performance—are	lacking,	
highlighting	the	importance	for	continued	work	on	such	curricula	(Pang	&	Good,	2000).	Evidence	from	
this	study	suggest	that	LbyM	is	associated	with	increases	in	student	math	and	science	performance,	
although	further	research	with	a	larger	student	sample	would	be	beneficial	to	examine	these	increases	
with	more	precision.	
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Appendix	A	
Table	A1.	Means	and	Standard	Deviations	of	Student	Pre	Assessments	for	the	Final	Analytic	Sample,	by	Experi-
mental	Condition	

	

	

	

	

	

	

	

	
a.	Computed	based	on	valid	(non-missing)	data.	Student	level	descriptive	analysis	without	taking	considera-
tion	of	clustering	effects	(students	were	nested	with	classrooms).	

	

	

Table	A2.	Means	and	Standard	Deviations	of	Student	Pre	Attitude	Measures	for	the	Final	Analytic	Sample,	by	
Experimental	Condition	

Attitude	Measure	 Comparison	 Treatment	 Differenceb	

Student	Attitude	towards	Math		 	 	 	
Mean	 3.38	 3.35	 .03	

Standard	deviation	 1.00	 .78	 --	
N	 26	 75	 --	

Student	Attitude	towards	Science		 	 	 	
Mean	 3.48	 3.14	 .34	

Standard	deviation	 .74	 .57	 --	
N	 24	 75	 --	

Student	Attitude	towards	Technology	and	Engineer-
ing	

	 	 	

Mean	 3.32	 3.49	 -.17	
Standard	deviation	 .69	 .69	 --	

N	 26	 75	 --	
Student	Attitude	towards	21st	Century	Skills	 	 	 	

Mean	 4.21	 3.91	 .30	
Standard	deviation	 .53	 .52	 --	

N	 36	 74	 --	

b.	Computed	based	on	valid	(non-missing)	data.	Student	level	descriptive	analysis	without	taking	considera-
tion	of	clustering	effects	(students	were	nested	with	classrooms).	

	

	

	 	

Achievement	Measure	 Comparison	 Treatment	 Differencea	

LbyM	Science	Assessment	 	 	 	
Mean	 40.77	 40.10	 0.67	

Standard	deviation	 20.59	 16.26	 --	
N	 52	 98	 --	

LbyM	Math	Assessment	 	 	 	
Mean	 46.15	 43.75	 2.40	

Standard	deviation	 23.56	 24.03	 --	
N	 52	 98	 --	
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Table	A3.	Additional	Regression	Analysis	of	Predictors	of	Mathematics	End-line	Scores	(percent	correct)	for	
the	Final	Analytic	Sample	(N	=	150)	

Predictor	variables	 GLM	Model	1	 HLM	Model	1	 HLM	Model	2	 HLM	Model	3	

Baseline	math	percent	correct	 0.60**	 0.60**	 0.52**	 0.48**	

Treatment	 2.74	 2.74	 4.52	 3.45	

School-level	demographics	 	 	 	 	

Percent	ELs	 --	 --	 -1.40	 -0.96	
Percent	free/reduced	lunch	eligible	 --	 --	 0.61	 0.39	
Percent	minority	ethnicity	(non-white)	 --	 --	 0.58	 0.45	

Cluster	(base:	Block	0)	 	 	 	 	

Block	1	 --	 --	 --	 5.11	
Block	2	 --	 --	 --	 -8.23	
Block	3	 --	 --	 --	 -2.58	
Block	4	 --	 --	 --	 -1.41	
Block	5	 --	 --	 --	 -5.03	

+	Significant	at	a	=	0.10	
*	Significant	at	a	=	0.05	

**	Significant	at	a	=	0.01	

	

	

Table	A4.	Additional	Regression	Analysis	of	Predictors	of	Science	End-line	Scores	 (Percent	Correct)	 for	the	
Final	Analytic	Sample	(N	=	150)	

Predictor	variables	 GLM	Model	1	 HLM	Model	1	 HLM	Model	2	 HLM	Model	3	

Baseline	science	percent	correct	 0.68**	 0.6**	 0.61**	 0.58**	

Treatment	 6.34*	 5.96	 7.87**	 5.74	

School-level	demographics	 	 	 	 	

Percent	ELs	 --	 --	 -3.88**	 -3.22	
Percent	free/reduced	lunch	eligible	 --	 --	 0.84*	 0.47	
Percent	minority	ethnicity	(non-white)	 --	 --	 2.07*	 1.57	

Cluster	(base:	Block	0)	 	 	 	 	

Block	1	 --	 --	 --	 1.17	
Block	2	 --	 --	 --	 -3.50	
Block	3	 --	 --	 --	 1.29	
Block	4	 --	 --	 --	 -2.02	
Block	5	 --	 --	 --	 -7.82	

+	Significant	at	a	=	0.10	
*	Significant	at	a	=	0.05	

**	Significant	at	a	=	0.01	
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Table	B1.	Participants’	Demographic	Information	for	the	Sample	with	8th	Graders,	by	Experimental	Condition	
	 Comparison	 Treatment	 	

	 Number	 Percentc	 Number	 Percent	 p-valued	

Grade	level	 	 	 	 	 0.06	
8th	grade	 7	 11.86%	 0	 0%	 --	
9th	grade	 24	 40.58%	 87	 88.78%	 --	
10th	grade	 12	 20.34%	 8	 8.16%	 --	
11th	grade	 11	 18.64%	 0	 0&	 --	
12th	grade	 5	 8.47%	 3	 30.6%	 --	

c.	Computed	based	on	valid	(non-missing)	data.	Components	may	not	sum	to	100	because	of	rounding.	
d.	A	test	for	equality	of	proportion	between	treatment	and	comparison	students	was	conducted,	and	the	cor-
rected	p-value,	accounting	for	clustering	effects	(students	were	nested	with	schools),	was	reported	here.		

	
	

Table	B2.	Baseline	Equivalence	of	Student	Pre	Assessments	for	the	Sample	with	8th	Graders,	by	Experimental	
Condition	

e.	Computed	based	on	valid	(non-missing)	data.	A	multi-level	regression	model	that	accounted	for	clustering	
effects	(students	were	nested	with	classrooms)	was	used	to	test	whether	students’	math	and	science	pre-
tests	at	baseline	were	equivalent	between	treatment	and	comparison	groups.	

	f.	Effect	size	was	calculated	by	dividing	treatment	and	comparison	difference	by	the	comparison	group	
standard	deviation	of	the	pre	measure	variable.	

	

	 	

Achievement	Measure	 Comparison	 Treatment	 Differencee	 p-value	 Effect	Sizef	

LbyM	Science	Assessment	 	 	 	 	 	

Mean	 40.82	 40.88	 -0.06	 0.99	 	

Standard	deviation	 20.04	 16.26	 --	 --	 	

N	 59	 98	 --	 --	 	

LbyM	Math	Assessment	 	 	 	 	 	

Mean	 45.46	 43.49	 1.97	 0.81	 	
Standard	deviation	 23.36	 24.03	 --	 --	 	

N	 59	 98	 --	 --	 	
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Table	B3.	Baseline	Equivalence	for	Student	Pre	Attitude	Measures	for	the	Sample	with	8th	Graders,	by	Ex-
perimental	Condition	

Attitude	Measure	 Comparison	 Treatment	 Differenceg	 p-value	 Effect	Sizeh	

Student	Attitude	towards	Math		 	 	 	 	 	
Mean	 3.48	 3.35	 .13	 .45	 .14	

Standard	deviation	 .96	 .78	 --	 --	 	
N	 33	 75	 --	 --	 	

Student	Attitude	towards	Science		 	 	 	 	 	
Mean	 3.57	 3.14	 .43	 .001**	 .61	

Standard	deviation	 .71	 .57	 --	 --	 	
N	 31	 75	 --	 --	 	

Student	Attitude	towards	Technol-
ogy	and	Engineering	

	 	 	 	 	

Mean	 3.34	 3.49	 -.14	 .31	 .21	
Standard	deviation	 .66	 .69	 --	 --	 	

N	 33	 75	 --	 --	 	
Student	Attitude	towards	21st	Cen-
tury	Skills	

	 	 	 	 	

Mean	 4.17	 3.91	 .26	 .052	 .46	
Standard	deviation	 .57	 .52	 --	 --	 	

N	 33	 74	 --	 --	 	

g.	Computed	based	on	valid	(non-missing)	data.	A	multi-level	regression	model	that	accounted	for	clustering	
effects	(students	were	nested	with	classrooms)	was	used	to	test	whether	students’	attitudes	towards	math,	
science,	technology	and	engineering,	and	21st	century	skills	pretests	at	baseline	were	equivalent	between	
treatment	and	comparison	groups.	

h.	Effect	size	was	calculated	by	dividing	treatment	and	comparison	difference	by	the	comparison	group	stand-
ard	deviation	of	the	pre	measure	variable.	

 

 

Table	B4.	Student	Math	and	Science	Outcomes	for	the	Sample	with	8th	Graders	(N=157)	

Outcome	Meas-
ure	

Covariate-Adjusted	Mean	 Covariate-Ad-
justed	Mean	Dif-

ference	
p-Value	

95%		
Confidence	In-

terval	

Effect	
Sizei	Treatment	

(N	=	98)	
Comparison	
(N	=	59)	

postMATH	 49.89	
(2.09)	

48.07	
(2.76)	

1.82	
(3.61)	

0.61	 -5.25	-	8.90	 0.07	

postSCI	 48.87	
(2.15)	

43.81	
(2.59)	

5.06	
(3.52)	

0.15	 -1.84	-	11.95	 0.22	

i.	Effect	size	was	calculated	by	dividing	impact	estimate	by	the	comparison	group	standard	deviation	of	the	
outcome	variable	(Math	SD	=	24.79;	Science	SD	=	22.50)	
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Table	B5.	Additional	Regression	Analysis	of	Predictors	of	Mathematics	End-line	Scores	(Percent	Correct)	for	
the	Sample,	with	8th	Graders	(N	=	157)	

Predictor	variables	 GLM	Model	1	 HLM	Model	1	 HLM	Model	2	 HLM	Model	3	

Baseline	math	percent	correct	 0.58**	 0.58**	 0.52**	 0.47**	

Treatment	 1.41	 1.41	 1.82	 0.72	

School-level	demographics	 	 	 	 	

Percent	ELs	 --	 --	 -1.09	 -0.71	
Percent	free/reduced	lunch	eligible	 --	 --	 0.38	 0.07	
Percent	minority	ethnicity	(non-white)	 --	 --	 0.35	 0.18	

Cluster	(base:	Block	0)	 	 	 	 	

Block	1	 --	 --	 --	 2.41	
Block	2	 --	 --	 --	 -12.01	
Block	3	 --	 --	 --	 -4.10	
Block	4	 --	 --	 --	 -1.76	
Block	5	 --	 --	 --	 -8.87	

+	Significant	at	a	=	0.10	
*	Significant	at	a	=	0.05	

**	Significant	at	a	=	0.01	

 

 

Table	B6.	Additional	Regression	Analysis	of	Predictors	of	Science	End-line	Scores	 (Percent	Correct)	 for	 the	
Sample,	with	8th	Graders	(N	=	157)	

Predictor	variables	 GLM	Model	1	 HLM	Model	1	 HLM	Model	2	 HLM	Model	3	

Baseline	math	percent	correct	 0.68**	 0.65**	 0.62**	 0.58**	

Treatment	 4.80+	 4.65	 5.06	 2.19	

School-level	demographics	 	 	 	 	

Percent	ELs	 --	 --	 -2.99+	 -2.86	
Percent	free/reduced	lunch	eligible	 --	 --	 0.58	 0.04	
Percent	minority	ethnicity	(non-white)	 --	 --	 1.53	 1.19	

Cluster	(base:	Block	0)	 	 	 	 	

Block	1	 --	 --	 --	 -2.27	
Block	2	 --	 --	 --	 -8.00	
Block	3	 --	 --	 --	 -0.45	
Block	4	 --	 --	 --	 -2.35	
Block	5	 --	 --	 --	 -12.54	

+	Significant	at	a	=	0.10	
*	Significant	at	a	=	0.05	

**	Significant	at	a	=	0.01	
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Table	B7.	Student	Attitudes	Toward	Math,	Science,	Engineering,	and	21st	Century	Skills,	with	8th	Graders	(N	
=	108)	

Scale	
Covariate-Adjusted	Mean	 Covariate-Ad-

justed	Mean	Dif-
ferencea	

p-Value	 95%	Confi-
dence	Interval	

Effect	
Sizej	Treatment	

(N	=	75)	
Comparison	
(N	=	33)	

Math	 3.29	(0.06)	 3.31	(0.11)	 -0.03	(0.14)	 0.85	 -0.30	–	0.25	 -0.03	
Science	 3.16	(0.07)	 3.16	(0.13)	 0.00	(0.16)	 1.00	 -0.32	–	0.32	 0.00	
Engineering	 3.28	(0.08)	 3.20	(0.14)	 0.08	(0.18)	 0.64	 -0.27	–	0.44	 0.11	
21st	Century	 3.93	(0.07)	 3.93	(0.11)	 0.00	(0.15)	 0.98	 -0.29	–	0.29	 0.00	

j.	Effect	size	was	calculated	by	dividing	impact	estimates	by	the	comparison	group	standard	deviation	of	the	
outcome	variable	(Math	SD	=	1.00;	Science	SD	=	0.77;	Engineering	SD	=	0.76;	21st	Century	SD	=	0.55)	
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Table	B8.	Chi-squared	Test	of	Student	Interest	in	STEM	Careers	for	the	Sample	with	8th	Graders	(N	=	108)	
	 Pre-Intervention	 Post	Intervention	

Field	 Intervention	 Comparison	 P-value	 Intervention	 Comparison	 P-value	

	 N	 %	 N	 %	 	 N	 %	 N	 %	 	
Physics	 	 	 	 	 0.62	 	 	 	 	 0.70	
Not	interested	 47	 62.67	 19	 57.58	 	 55	 73.33	 23	 69.70	 	
Interested	 28	 37.33	 14	 42.42	 	 20	 26.67	 10	 30.30	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Env.	Science	 	 	 	 	 0.57	 	 	 	 	 0.05*	
Not	interested	 48	 64.00	 23	 69.70	 	 59	 78.67	 20	 60.61	 	
Interested	 27	 36.00	 10	 30.30	 	 16	 21.33	 13	 39.39	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Biology	 	 	 	 	 0.09+	 	 	 	 	 0.33	
Not	interested	 45	 60.00	 14	 42.42	 	 44	 58.67	 16	 48.48	 	
Interested	 30	 40.00	 19	 57.58	 	 31	 41.33	 17	 51.52	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Vet.	Medicine	 	 	 	 	 0.60	 	 	 	 	 0.69	
Not	interested	 45	 60.00	 18	 54.55	 	 47	 62.67	 22	 66.67	 	
Interested	 30	 40.00	 15	 45.45	 	 28	 37.33	 11	 33.33	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Mathematics	 	 	 	 	 0.60	 	 	 	 	 0.18	
Not	interested	 46	 61.33	 22	 66.67	 	 53	 70.67	 19	 57.58	 	
Interested	 29	 38.67	 11	 33.33	 	 22	 29.33	 14	 42.42	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Medicine	 	 	 	 	 0.43	 	 	 	 	 0.07+	
Not	interested	 38	 50.67	 14	 42.42	 	 37	 49.33	 10	 30.30	 	
Interested	 37	 49.33	 19	 57.58	 	 38	 50.67	 23	 69.70	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Earth	Science	 	 	 	 	 0.78	 	 	 	 	 0.40	
Not	interested	 52	 69.33	 22	 66.67	 	 58	 77.33	 23	 69.70	 	
Interested	 23	 30.67	 11	 33.33	 	 17	 22.67	 10	 30.30	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Comp.	Science	 	 	 	 	 0.88	 	 	 	 	 0.07+	
Not	interested	 42	 56.00	 19	 57.58	 	 50	 66.67	 16	 48.48	 	
Interested	 33	 44.00	 14	 42.42	 	 25	 33.33	 17	 51.52	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Med.	Science	 	 	 	 	 0.16	 	 	 	 	 0.12	
Not	interested	 45	 60.00	 15	 45.45	 	 44	 58.67	 14	 42.42	 	
Interested	 30	 40.00	 18	 54.55	 	 31	 41.33	 19	 57.58	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Chemistry	 	 	 	 	 0.02*	 	 	 	 	 0.14	
Not	interested	 51	 68.00	 15	 45.45	 	 52	 69.33	 18	 54.55	 	
Interested	 24	 32.00	 18	 54.55	 	 23	 30.67	 15	 45.45	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Energy	 	 	 	 	 0.21	 	 	 	 	 0.81	
Not	interested	 45	 60.00	 24	 72.73	 	 54	 72.00	 23	 69.70	 	
Interested	 30	 40.00	 9	 27.27	 	 21	 28.00	 10	 30.30	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
Engineering	 	 	 	 	 0.00**	 	 	 	 	 0.06+	
Not	interested	 31	 41.33	 25	 75.76	 	 40	 53.33	 24	 72.73	 	
Interested	 44	 58.67	 8	 24.24	 	 35	 46.67	 9	 27.27	 	

Total	 75	 100.00	 33	 100.00	 	 75	 100.00	 33	 100.00	 	
+	Significant	at	a	=	0.10	

	 	 *	Significant	at	a	=	0.05	
**	Significant	at	a	=	0.01 



 

–	35	– 

Appendix	B	

	



 

–	36	– 

	 	



 

–	37	– 

	


